HyperAI

Semi Supervised Image Classification On Cifar 2

Métriques

Percentage error

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèlePercentage error
self-meta-pseudo-labels-meta-pseudo-labels21.68
dash-semi-supervised-learning-with-dynamic21.97±0.14
class-aware-contrastive-semi-supervised19.32
flexmatch-boosting-semi-supervised-learning21.90±0.15
freematch-self-adaptive-thresholding-for-semi21.68
regularization-with-stochastic39.19
simple-similar-pseudo-label-exploitation-for21.89
shot-vae-semi-supervised-deep-generative25.3
repetitive-reprediction-deep-decipher-for32.87
laplacenet-a-hybrid-energy-neural-model-for22.11± 0.23
simmatch-semi-supervised-learning-with20.58
dual-student-breaking-the-limits-of-the32.77
dp-ssl-towards-robust-semi-supervised22.24±0.31
all-labels-are-not-created-equal-enhancing24.45±0.12
fixmatch-simplifying-semi-supervised-learning23.18±0.11
temporal-ensembling-for-semi-supervised38.65
np-match-when-neural-processes-meet-semi21.22
milking-cowmask-for-semi-supervised-image23.07±0.30
enaet-self-trained-ensemble-autoencoding26.93±0.21
contrastive-regularization-for-semi21.03
fixmatch-simplifying-semi-supervised-learning22.6
enaet-self-trained-ensemble-autoencoding22.92
doublematch-improving-semi-supervised21.22± 0.17
in-defense-of-pseudo-labeling-an-uncertainty-132
Modèle 2520.42±0.17
semi-supervised-learning-with-self-supervised38.7
lidam-semi-supervised-learning-with-localized23.22