HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Semi Supervised Image Classification
Semi Supervised Image Classification On 1
Semi Supervised Image Classification On 1
Métriques
Top 1 Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Top 1 Accuracy
Paper Title
Repository
PAWS (ResNet-50)
66.5%
Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples
Rotation
-
S4L: Self-Supervised Semi-Supervised Learning
SimCLRv2 (ResNet-152 x3, SK)
74.9%
Big Self-Supervised Models are Strong Semi-Supervised Learners
VICREG (Resnet-50)
54.8%
VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning
Exemplar (joint training)
-
S4L: Self-Supervised Semi-Supervised Learning
SEER (RegNet10B)
62.4%
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
SimCLRv2 distilled (ResNet-50 x2, SK)
75.9%
Big Self-Supervised Models are Strong Semi-Supervised Learners
Semi-ViT (ViT-Base)
71%
Semi-supervised Vision Transformers at Scale
Barlow Twins (ResNet-50)
55%
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
DebiasPL (ResNet-50)
71.3%
Debiased Learning from Naturally Imbalanced Pseudo-Labels
SimMatchV2 (ResNet-50)
71.9%
SimMatchV2: Semi-Supervised Learning with Graph Consistency
PAWS (ResNet-50 2x)
69.6%
Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples
SimCLR (ResNet-50 4×)
63.0%
A Simple Framework for Contrastive Learning of Visual Representations
BYOL (ResNet-50)
53.2%
Bootstrap your own latent: A new approach to self-supervised Learning
CPC
-
Representation Learning with Contrastive Predictive Coding
SimCLRv2 distilled (ResNet-50)
73.9%
Big Self-Supervised Models are Strong Semi-Supervised Learners
SimCLR (ResNet-50 2×)
58.5%
A Simple Framework for Contrastive Learning of Visual Representations
CoMatch + EPASS (ResNet-50)
67.4%
Debiasing, calibrating, and improving Semi-supervised Learning performance via simple Ensemble Projector
Exemplar
-
S4L: Self-Supervised Semi-Supervised Learning
CoMatch (w. MoCo v2)
67.1%
CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
0 of 58 row(s) selected.
Previous
Next