HyperAI

Semantic Segmentation On Trans10K

Métriques

GFLOPs

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleGFLOPs
u-net-convolutional-networks-for-biomedical124.55
pyramid-scene-parsing-network187.03
icnet-for-real-time-semantic-segmentation-on10.64
encoder-decoder-with-atrous-separable37.98
ocnet-object-context-network-for-scene43.31
dual-attention-network-for-scene-segmentation198.00
trans4trans-efficient-transformer-for34.38
bisenet-bilateral-segmentation-network-for19.91
segmenting-transparent-objects-in-the-wild61.31
denseaspp-for-semantic-segmentation-in-street36.20
segmenting-transparent-object-in-the-wild49.03
fully-convolutional-networks-for-semantic-142.23
refinenet-multi-path-refinement-networks-for44.56
trans4trans-efficient-transformer-for10.45
trans4trans-efficient-transformer-for19.92