HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Segmentation sémantique
Semantic Segmentation On S3Dis
Semantic Segmentation On S3Dis
Métriques
Mean IoU
Number of params
oAcc
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Mean IoU
Number of params
oAcc
Paper Title
Repository
A-CNN
62.9
N/A
87.3
A-CNN: Annularly Convolutional Neural Networks on Point Clouds
-
DeepViewAgg
74.7
41.2M
90.1
Learning Multi-View Aggregation In the Wild for Large-Scale 3D Semantic Segmentation
-
RandLA-Net
-
1.2M
87.1
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
-
MinkowskiNet
65.4
37.9M
-
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
-
MuGNet
69.8
N/A
88.5
MuGNet: Multi-Resolution Graph Neural Network for Large-Scale Pointcloud Segmentation
EQ-Net
77.5
N/A
-
A Unified Query-based Paradigm for Point Cloud Understanding
-
Feature Geometric Net (FG-Net)
70.8
N/A
88.2
FG-Net: Fast Large-Scale LiDAR Point Clouds Understanding Network Leveraging Correlated Feature Mining and Geometric-Aware Modelling
-
Swin3D-L
79.8
N/A
92.4
Swin3D: A Pretrained Transformer Backbone for 3D Indoor Scene Understanding
-
JSENet
67.7
N/A
-
JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds
-
BIM-Net
-
-
-
Fully Automated Scan-to-BIM Via Point Cloud Instance Segmentation
PointCNN
65.4
N/A
88.1
A-CNN: Annularly Convolutional Neural Networks on Point Clouds
-
PointASNL
68.7
N/A
88.8
PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling
-
KPConv
70.6
14.1M
-
KPConv: Flexible and Deformable Convolution for Point Clouds
-
PointCNN
65.4
N/A
-
Point Transformer
-
BAAF-Net
72.2
N/A
88.9
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion
-
PPT + SparseUNet
78.1
N/A
92.2
Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training
-
JSNet
61.7
N/A
88.7
JSNet: Joint Instance and Semantic Segmentation of 3D Point Clouds
-
ShellNet
66.8
N/A
-
ShellNet: Efficient Point Cloud Convolutional Neural Networks using Concentric Shells Statistics
-
SPGraph
62.1
N/A
85.5
A-CNN: Annularly Convolutional Neural Networks on Point Clouds
-
3P-RNN
56.3
N/A
86.9
A-CNN: Annularly Convolutional Neural Networks on Point Clouds
-
0 of 54 row(s) selected.
Previous
Next
Semantic Segmentation On S3Dis | SOTA | HyperAI