HyperAI

Semantic Segmentation On Nyu Depth V2

Métriques

Mean IoU

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleMean IoU
dynamic-multimodal-fusion51.0%
geminifusion-efficient-pixel-wise-multimodal60.9
cmx-cross-modal-fusion-for-rgb-x-semantic54.4%
locality-sensitive-deconvolution-networks45.9%
efficient-rgb-d-semantic-segmentation-for48.17
3d-graph-neural-networks-for-rgbd-semantic43.1%
asymformer-asymmetrical-cross-modal55.3%
learning-deep-multimodal-feature51.2%
swinmtl-a-shared-architecture-for58.14%
omnivec2-a-novel-transformer-based-network63.6
multi-modal-attention-based-fusion-model-for44.8%
geminifusion-efficient-pixel-wise-multimodal56.8
cross-stitch-networks-for-multi-task-learning19.3%
rgb-based-semantic-segmentation-using-self33.49%
delivering-arbitrary-modal-semantic56.9%
cascaded-feature-network-for-semantic47.7%
nddr-cnn-layer-wise-feature-fusing-in-multi43.3%
acnet-attention-based-network-to-exploit48.3%
malleable-2-5d-convolution-learning-receptive50.9%
spatial-information-guided-adaptive-context49.4%
adashare-learning-what-to-share-for-efficient29.6%
pixel-difference-convolutional-network-for53.5%
optimizing-rgb-d-semantic-segmentation51.9%
masked-supervised-learning-for-semantic39.31%
multimodal-token-fusion-for-vision53.3%
haarnet-large-scale-linear-morphological50.7%
improving-multi-modal-learning-with-uni-modal49.14%
exploring-relational-context-for-multi-task46.33%
understanding-dark-scenes-by-contrasting52.5%
composite-learning-for-robust-and-effective33.48%
refinenet-multi-path-refinement-networks-for46.5%
inverseform-a-loss-function-for-structured53.1%
ci-net-contextual-information-for-joint42.6%
prompt-guided-transformer-for-multi-task41.61
comptr-towards-diverse-bi-source-dense55.5%
efficient-yet-deep-convolutional-neural32.3%
multi-task-meta-learning-learn-how-to-adapt41.51%
variational-context-deformable-convnets-for50.7%
omnivore-a-single-model-for-many-visual55.1%
joint-task-recursive-learning-for-semantic46.8%
dcanet-differential-convolution-attention53.3%
inverted-pyramid-multi-task-transformer-for53.56%
toward-edge-efficient-dense-predictions-with22.1%
multimodal-knowledge-expansion48.88%
efficient-multi-task-scene-analysis-with-rgb51.26%
malleable-2-5d-convolution-learning-receptive49.7%
mmanet-margin-aware-distillation-and-modality49.62%
learning-fully-dense-neural-networks-for47.4%
multimodal-token-fusion-for-vision54.2%
mti-net-multi-scale-task-interaction-networks49.0
pattern-structure-diffusion-for-multi-task51.0%
multi-layer-feature-aggregation-for-deep50.7%
light-weight-refinenet-for-real-time-semantic44.4%
temporally-distributed-networks-for-fast43.5
understanding-dark-scenes-by-contrasting55.8%
multimae-multi-modal-multi-task-masked56.0%
hs3-learning-with-proper-task-complexity-in53.5%
bi-directional-cross-modality-feature52.4%
scene-parsing-via-integrated-classification50.70
polymax-general-dense-prediction-with-mask58.08%
mmformer-multimodal-medical-transformer-for48.45%
rednet-residual-encoder-decoder-network-for47.2%
variational-context-deformable-convnets-for51.9%
dense-decoder-shortcut-connections-for-single48.1%
efficient-multimodal-semantic-segmentation59.3
what-uncertainties-do-we-need-in-bayesian37.3%
std2p-rgbd-semantic-segmentation-using-spatio40.1%
warp-refine-propagation-semi-supervised-auto52.2%
rfnet-region-aware-fusion-network-for48.13%
pattern-affinitive-propagation-across-depth-150.4%
spatial-information-guided-adaptive-context48.2%
depth-aware-cnn-for-rgb-d-segmentation43.9%
channel-exchanging-networks-for-multimodal52.5%
dformer-rethinking-rgbd-representation51.8%
hspformer-hierarchical-spatial-perception57.8%
hemis-hetero-modal-image-segmentation37.77%
depth-adapted-cnns-for-rgb-d-semantic51.24%
real-time-joint-semantic-segmentation-and42.0%
context-aware-interaction-network-for-rgb-t52.6%
geminifusion-efficient-pixel-wise-multimodal57.7
dformer-rethinking-rgbd-representation57.2%
temporally-distributed-networks-for-fast37.4
contrastive-multimodal-fusion-with48.1%
cmx-cross-modal-fusion-for-rgb-x-semantic56.9%
spatial-information-guided-convolution-for51.0%
cmx-cross-modal-fusion-for-rgb-x-semantic56.3%
variational-context-deformable-convnets-for45.3
fully-convolutional-networks-for-semantic-
understanding-dark-scenes-by-contrasting53.7%
sosd-net-joint-semantic-object-segmentation45.0%
efficient-multi-task-rgb-d-scene-analysis-for53.34%
semantic-segmentation-with-reverse-attention41.2%
omnivore-a-single-model-for-many-visual56.8%
attention-based-dual-supervised-decoder-for52.5%
light-weight-refinenet-for-real-time-semantic43.6%
shapeconv-shape-aware-convolutional-layer-for49.0%
cerberus-transformer-joint-semantic50.4%
comptr-towards-diverse-bi-source-dense49.2%
hapnet-toward-superior-rgb-thermal-scene55.0
shapeconv-shape-aware-convolutional-layer-for51.3%
depth-adapted-cnns-for-rgb-d-semantic49.15%
dformer-rethinking-rgbd-representation55.6%
efficient-rgb-d-semantic-segmentation-for50.30
diffusion-based-rgb-d-semantic-segmentation61.5
recurrent-scene-parsing-with-perspective44.5%
cross-task-attention-mechanism-for-dense40.84%
panopticndt-efficient-and-robust-panoptic59.02
depth-adapted-cnns-for-rgb-d-semantic47.02%
shapeconv-shape-aware-convolutional-layer-for48.8%
omnivec-learning-robust-representations-with60.8
deep-feature-selection-and-fusion-for-rgb-d52.0%
light-weight-refinenet-for-real-time-semantic41.7%
geminifusion-efficient-pixel-wise-multimodal60.2
prompt-guided-transformer-for-multi-task46.43
depth-adapted-cnns-for-rgb-d-semantic50.05%
dformer-rethinking-rgbd-representation53.6%