HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Segmentation sémantique
Semantic Segmentation On Isprs Potsdam
Semantic Segmentation On Isprs Potsdam
Métriques
Mean F1
Mean IoU
Overall Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Mean F1
Mean IoU
Overall Accuracy
Paper Title
Repository
AerialFormer-B
94.1
89.1
93.9
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
LSKNet-S
93.1
87.2
92.0
LSKNet: A Foundation Lightweight Backbone for Remote Sensing
PSPNet (SAP)
-
74.3
88.56
Stochastic Subsampling With Average Pooling
-
ViT-B + RVSA-UperNet
-
-
90.77
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
EfficientUNets and Transformers
93.7
-
91.8
Semantic Labeling of High Resolution Images Using EfficientUNets and Transformers
-
BANet
-
-
91.06
Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images
FT-UNetFormer
93.3
87.5
92.0
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
RSP-Swin-T-UperNet
-
-
90.78
An Empirical Study of Remote Sensing Pretraining
MANet
-
-
91.318
Multiattention network for semantic segmentation of fine-resolution remote sensing images
-
U-Net (ConvFormer-M36)
-
89.45
-
U-Net Ensemble for Enhanced Semantic Segmentation in Remote Sensing Imagery
-
ViTAE-B + RVSA -UperNet
-
-
91.22
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
ViT-G12X4
92.12
-
92.58
A Billion-scale Foundation Model for Remote Sensing Images
-
RSP-ResNet-50-UperNet
-
-
90.61
An Empirical Study of Remote Sensing Pretraining
RSP-ViTAEv2-S-UperNet
-
-
91.21
An Empirical Study of Remote Sensing Pretraining
ABCNet
-
-
91.3
ABCNet: Attentive Bilateral Contextual Network for Efficient Semantic Segmentation of Fine-Resolution Remote Sensing Images
IMP-ViTAEv2-S-UperNet
-
-
91.6
An Empirical Study of Remote Sensing Pretraining
UNetFormer
92.8
86.8
91.3
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
DC-Swin
93.25
87.56
92.0
A Novel Transformer Based Semantic Segmentation Scheme for Fine-Resolution Remote Sensing Images
SFA-Net
93.5
-
-
SFA-Net: Semantic Feature Adjustment Network for Remote Sensing Image Segmentation
0 of 19 row(s) selected.
Previous
Next
Semantic Segmentation On Isprs Potsdam | SOTA | HyperAI