HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Segmentation sémantique
Semantic Segmentation On Densepass
Semantic Segmentation On Densepass
Métriques
mIoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
mIoU
Paper Title
Repository
PVT (Tiny, FPN)
31.20%
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
SwiftNet (Merge3)
32.04%
ISSAFE: Improving Semantic Segmentation in Accidents by Fusing Event-based Data
CLAN
31.46%
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation
ERFNet
16.65%
ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation
Seamless (Mapillary)
34.14%
Seamless Scene Segmentation
Trans4PASS+ (multi-scale)
57.23%
Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation
SIM
44.58%
Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation
SegFormer (MiT-B1)
38.5%
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
SETR (MLA, Transformer-L)
35.6%
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
Trans4PASS (single-scale)
55.25%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
Trans4PASS+ (single-scale)
56.45%
Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation
DANet (ResNet-101)
28.5%
Dual Attention Network for Scene Segmentation
Fast-SCNN
24.6%
Fast-SCNN: Fast Semantic Segmentation Network
ECANet
43.02%
Capturing Omni-Range Context for Omnidirectional Segmentation
SegFormer (MiT-B2)
42.4%
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
USSS (Mapillary)
30.87%
Universal Semi-Supervised Semantic Segmentation
USSS (IDD)
26.98%
Universal Semi-Supervised Semantic Segmentation
PCS
53.83%
Prototypical Cross-domain Self-supervised Learning for Few-shot Unsupervised Domain Adaptation
DNL (ResNet-101)
32.1%
Disentangled Non-Local Neural Networks
ASMLP (MiT-B1)
42.05%
AS-MLP: An Axial Shifted MLP Architecture for Vision
0 of 36 row(s) selected.
Previous
Next