HyperAI

Semantic Segmentation On Densepass

Métriques

mIoU

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèlemIoU
pyramid-vision-transformer-a-versatile31.20%
issafe-improving-semantic-segmentation-in32.04%
taking-a-closer-look-at-domain-shift-category31.46%
erfnet-efficient-residual-factorized-convnet16.65%
seamless-scene-segmentation34.14%
behind-every-domain-there-is-a-shift-adapting57.23%
differential-treatment-for-stuff-and-things-a44.58%
segformer-simple-and-efficient-design-for38.5%
rethinking-semantic-segmentation-from-a35.6%
bending-reality-distortion-aware-transformers55.25%
behind-every-domain-there-is-a-shift-adapting56.45%
dual-attention-network-for-scene-segmentation28.5%
fast-scnn-fast-semantic-segmentation-network24.6%
capturing-omni-range-context-for43.02%
segformer-simple-and-efficient-design-for42.4%
universal-semi-supervised-semantic30.87%
universal-semi-supervised-semantic26.98%
prototypical-cross-domain-self-supervised53.83%
disentangled-non-local-neural-networks32.1%
as-mlp-an-axial-shifted-mlp-architecture-for42.05%
daformer-improving-network-architectures-and54.67%
bending-reality-distortion-aware-transformers56.38%
encoder-decoder-with-atrous-separable32.5%
real-time-semantic-segmentation-with-fast26.9%
transfer-beyond-the-field-of-view-dense41.99%
in-defense-of-pre-trained-imagenet25.67%
confidence-regularized-self-training31.67%
pyramid-scene-parsing-network29.5%
transfer-beyond-the-field-of-view-dense48.52%
panoptic-feature-pyramid-networks28.8%
rethinking-semantic-segmentation-from-a35.7%
dpt-deformable-patch-based-transformer-for36.50%
ds-pass-detail-sensitive-panoramic-annular23.66%
understanding-the-robustness-in-vision42.54%
metaformer-is-actually-what-you-need-for43.18%
cyclemlp-a-mlp-like-architecture-for-dense40.16%