HyperAI

Semantic Segmentation On Dada Seg

Métriques

mIoU

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèlemIoU
taking-a-closer-look-at-domain-shift-category28.76
disentangled-non-local-neural-networks19.7
deep-residual-learning-for-image-recognition18.96
issafe-improving-semantic-segmentation-in29.97
differential-treatment-for-stuff-and-things-a26.85
19080791927.5
mobilenetv2-inverted-residuals-and-linear16.05
searching-for-mobilenetv318.2
rethinking-semantic-segmentation-from-a31.8
segformer-simple-and-efficient-design-for27.0
deep-residual-learning-for-image-recognition23.60
erfnet-efficient-residual-factorized-convnet9.0
fda-fourier-domain-adaptation-for-semantic24.45
exploring-event-driven-dynamic-context-for32.04
encoder-decoder-with-atrous-separable26.8
fast-scnn-fast-semantic-segmentation-network26.32
trans4trans-efficient-transformer-for-139.20
rethinking-semantic-segmentation-from-a30.4
towards-robust-semantic-segmentation-of46.97
pyramid-scene-parsing-network20.1
resnest-split-attention-networks19.99
lawin-transformer-improving-semantic25.16
bidirectional-learning-for-domain-adaptation29.66
dual-attention-network-for-scene-segmentation22.24
in-defense-of-pre-trained-imagenet20.5
segformer-simple-and-efficient-design-for16.6
panoptic-feature-pyramid-networks19.59
segformer-simple-and-efficient-design-for21.2