HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Segmentation sémantique
Semantic Segmentation On Coco Stuff Test
Semantic Segmentation On Coco Stuff Test
Métriques
mIoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
mIoU
Paper Title
Repository
CAA (ResNet-101)
41.2%
Channelized Axial Attention for Semantic Segmentation -- Considering Channel Relation within Spatial Attention for Semantic Segmentation
SenFormer (Swin-L)
50.1%
Efficient Self-Ensemble for Semantic Segmentation
DRAN(ResNet-101)
41.2%
Scene Segmentation with Dual Relation-aware Attention Network
CCL (ResNet-101)
35.7%
Context Contrasted Feature and Gated Multi-Scale Aggregation for Scene Segmentation
OCR (ResNet-101)
39.5%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
DAG-RNN (VGG-16)
31.2%
DAG-Recurrent Neural Networks For Scene Labeling
-
FCN (VGG-16)
22.7%
Fully Convolutional Networks for Semantic Segmentation
OCR (HRNetV2-W48)
40.5%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
VPNeXt
53.7
VPNeXt -- Rethinking Dense Decoding for Plain Vision Transformer
-
EVA
53.4%
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
SegViT (ours)
50.3%
SegViT: Semantic Segmentation with Plain Vision Transformers
EMANet
39.9%
Expectation-Maximization Attention Networks for Semantic Segmentation
RSSeg-ViT-L
52.0%
Representation Separation for Semantic Segmentation with Vision Transformers
-
DANet (ResNet-101)
39.7%
Dual Attention Network for Scene Segmentation
SVCNet (ResNet-101)
39.6%
Semantic Correlation Promoted Shape-Variant Context for Segmentation
RSSeg-ViT-L (BEiT pretrain)
52.6%
Representation Separation for Semantic Segmentation with Vision Transformers
-
RefineNet (ResNet-101)
33.6%
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
CAA (Efficientnet-B7)
45.4%
Channelized Axial Attention for Semantic Segmentation -- Considering Channel Relation within Spatial Attention for Semantic Segmentation
HRNetV2 + OCR + RMI (PaddleClas pretrained)
45.2%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
Asymmetric ALNN
37.2%
Asymmetric Non-local Neural Networks for Semantic Segmentation
0 of 20 row(s) selected.
Previous
Next
Semantic Segmentation On Coco Stuff Test | SOTA | HyperAI