Command Palette
Search for a command to run...
Semantic Segmentation On Coco 1
Métriques
mIoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
| Paper Title | ||
|---|---|---|
| HyperSeg | 77.2 | HyperSeg: Towards Universal Visual Segmentation with Large Language Model |
| OneFormer (InternImage-H, emb_dim=1024, single-scale) | 68.8 | OneFormer: One Transformer to Rule Universal Image Segmentation |
| OneFormer (DiNAT-L, single-scale) | 68.1 | OneFormer: One Transformer to Rule Universal Image Segmentation |
| Mask2Former (Swin-L, single-scale) | 67.4 | Masked-attention Mask Transformer for Universal Image Segmentation |
| OneFormer (Swin-L, single-scale) | 67.4 | OneFormer: One Transformer to Rule Universal Image Segmentation |
| MaskFormer (Swin-L, single-scale) | 64.8 | Masked-attention Mask Transformer for Universal Image Segmentation |
| SegCLIP | 26.5 | SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary Semantic Segmentation |
0 of 7 row(s) selected.