HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Segmentation sémantique
Semantic Segmentation On Cityscapes Val
Semantic Segmentation On Cityscapes Val
Métriques
mIoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
mIoU
Paper Title
Repository
DCT-EDANet
61.6
Exploring Semantic Segmentation on the DCT Representation
-
PatchDiverse + Swin-L (multi-scale test, upernet, ImageNet22k pretrain)
83.6%
Vision Transformers with Patch Diversification
DetCon_B
77.0%
Efficient Visual Pretraining with Contrastive Detection
StreamDEQ (8 iterations)
78.2
Representation Recycling for Streaming Video Analysis
SETR-PUP (80k, MS)
82.15
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
Soft Labells (HRnet)
84.8
Soft labelling for semantic segmentation: Bringing coherence to label down-sampling
FasterSeg
73.1%
FasterSeg: Searching for Faster Real-time Semantic Segmentation
HRNetV2 (HRNetV2-W40)
80.2
Deep High-Resolution Representation Learning for Visual Recognition
StreamDEQ (2 iterations)
57.9
Representation Recycling for Streaming Video Analysis
Dilated-ResNet (Dilated-ResNet-101)
75.7
Deep Residual Learning for Image Recognition
VPNeXt
84.4
VPNeXt -- Rethinking Dense Decoding for Plain Vision Transformer
-
GSCNN (ResNet-50)
73.0%
Gated-SCNN: Gated Shape CNNs for Semantic Segmentation
FAN-L-Hybrid
82.3
Understanding The Robustness in Vision Transformers
EfficientViT-B3 (r1184x2368)
83.2
EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
Trans4Trans
81.54%
Trans4Trans: Efficient Transformer for Transparent Object and Semantic Scene Segmentation in Real-World Navigation Assistance
Aerial-PASS (ResNet-18)
72.8%
Aerial-PASS: Panoramic Annular Scene Segmentation in Drone Videos
-
DSNet(single-scale)
80.4
DSNet: A Novel Way to Use Atrous Convolutions in Semantic Segmentation
RepVGG-B2
80.57%
RepVGG: Making VGG-style ConvNets Great Again
InternImage-H
87
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
ViT-Adapter-L
85.8
Vision Transformer Adapter for Dense Predictions
0 of 97 row(s) selected.
Previous
Next
Semantic Segmentation On Cityscapes Val | SOTA | HyperAI