HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Semantic Segmentation
Semantic Segmentation On Bjroad
Semantic Segmentation On Bjroad
Métriques
IoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
IoU
Paper Title
Repository
CMMPNe
62.85
Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust Road Extraction
-
Res-UNet
54.24
Road Extraction by Deep Residual U-Net
D-LinkNet
57.96
D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction
SA-Gate
62.14
Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate for RGB-D Semantic Segmentation
CMNeXt
63.22
Delivering Arbitrary-Modal Semantic Segmentation
CMX
62.28
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
DeepDualMapper
60.19
DeepDualMapper: A Gated Fusion Network for Automatic Map Extraction using Aerial Images and Trajectories
-
DeepLabv3+
50.81
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
LinkNet
57.89
LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation
UNet
54.88
U-Net: Convolutional Networks for Biomedical Image Segmentation
Sun et al.
59.18
Leveraging Crowdsourced GPS Data for Road Extraction from Aerial Imagery
-
0 of 11 row(s) selected.
Previous
Next