HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Correspondance sémantique
Semantic Correspondence On Spair 71K
Semantic Correspondence On Spair 71K
Métriques
PCK
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
PCK
Paper Title
Repository
HPF
28.2
Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features
-
GeoAware-SC (Zero-Shot)
68.5
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
-
GeoAware-SC (Supervised, AP-10K P.T.)
85.6
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
-
CATs++
59.8
CATs++: Boosting Cost Aggregation with Convolutions and Transformers
-
GeoAware-SC (Supervised)
82.9
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
-
SCOT
35.6
Semantic Correspondence as an Optimal Transport Problem
GeoAware-SC + CleanDIFT (Zero-Shot)
70.0
CleanDIFT: Diffusion Features without Noise
-
VAT
54.2
Cost Aggregation Is All You Need for Few-Shot Segmentation
-
SD+DINO (Supervised)
74.6
A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence
-
VAT (ECCV)
55.5
Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation
-
SD+DINO (Zero-shot)
64.0
A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence
-
MMNet
50.4
Multi-scale Matching Networks for Semantic Correspondence
-
IFCAT
64.4
Integrative Feature and Cost Aggregation with Transformers for Dense Correspondence
-
DHPF
37.3
Learning to Compose Hypercolumns for Visual Correspondence
-
ANCNet
30.1
Correspondence Networks with Adaptive Neighbourhood Consensus
-
LDMCorrespondences
45.4
Unsupervised Semantic Correspondence Using Stable Diffusion
-
SD+DINO + CleanDIFT (Zero-Shot)
64.8
CleanDIFT: Diffusion Features without Noise
-
CATs
49.9
CATs: Cost Aggregation Transformers for Visual Correspondence
-
DIFT + CleanDIFT (Zero-Shot)
61.4
CleanDIFT: Diffusion Features without Noise
-
CHM
46.3
Convolutional Hough Matching Networks
-
0 of 21 row(s) selected.
Previous
Next