HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Semantic Correspondence
Semantic Correspondence On Pf Pascal
Semantic Correspondence On Pf Pascal
Métriques
PCK
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
PCK
Paper Title
Repository
HPF
88.3
Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features
-
CHM
91.6
Convolutional Hough Matching Networks
SD+DINO (Supervised)
93.6
A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence
VAT
92.3
Cost Aggregation Is All You Need for Few-Shot Segmentation
DHPF
90.7
Learning to Compose Hypercolumns for Visual Correspondence
CATs++
93.8
CATs++: Boosting Cost Aggregation with Convolutions and Transformers
SCOT
88.8
Semantic Correspondence as an Optimal Transport Problem
NC-Net
-
Neighbourhood Consensus Networks
GeoAware-SC (Supervised)
95.1
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
GeoAware-SC (Zero-Shot)
82.6
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
VAT (ECCV)
92.3
Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation
GeoAware-SC (Supervised, AP-10K P.T.)
95.7
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
CATs
92.6
CATs: Cost Aggregation Transformers for Visual Correspondence
ANCNet
88.7
Correspondence Networks with Adaptive Neighbourhood Consensus
0 of 14 row(s) selected.
Previous
Next