HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Scene Text Recognition
Scene Text Recognition On Svt
Scene Text Recognition On Svt
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
CLIP4STR-L
98.5
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
CDistNet (Ours)
93.82
CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition
RARE
81.9
Robust Scene Text Recognition with Automatic Rectification
SIGA_T
95.1
Self-supervised Implicit Glyph Attention for Text Recognition
CSTR
90.6
Revisiting Classification Perspective on Scene Text Recognition
CLIP4STR-B
98.3
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
CLIP4STR-H (DFN-5B)
99.1
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
MATRN
95
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features
SEED
89.6
SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition
CCD-ViT-Base(ARD_2.8M)
97.8
Self-supervised Character-to-Character Distillation for Text Recognition
-
CCD-ViT-Small(ARD_2.8M)
96.4
Self-supervised Character-to-Character Distillation for Text Recognition
-
DiffusionSTR
93.6
DiffusionSTR: Diffusion Model for Scene Text Recognition
-
RCEED
91.8
Representation and Correlation Enhanced Encoder-Decoder Framework for Scene Text Recognition
S-GTR
95.8
Visual Semantics Allow for Textual Reasoning Better in Scene Text Recognition
SRN
91.5
Towards Accurate Scene Text Recognition with Semantic Reasoning Networks
DPAN
93.9
Look Back Again: Dual Parallel Attention Network for Accurate and Robust Scene Text Recognition
CLIP4STR-L (DataComp-1B)
98.6
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
NRTR+TPS++
94.6
TPS++: Attention-Enhanced Thin-Plate Spline for Scene Text Recognition
STAR-Net
83.6
Star-net: A spatial attention residue network for scene text recognition.
CLIP4STR-B*
98.76
An Empirical Study of Scaling Law for OCR
0 of 37 row(s) selected.
Previous
Next