HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Scene Text Recognition
Scene Text Recognition On Icdar2015
Scene Text Recognition On Icdar2015
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
PARSeq
89.6±0.3
Scene Text Recognition with Permuted Autoregressive Sequence Models
DAN
74.5
Decoupled Attention Network for Text Recognition
SAR
69.2
Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition
AON
73.0
AON: Towards Arbitrarily-Oriented Text Recognition
ASTER
76.1
ASTER: An Attentional Scene Text Recognizer with Flexible Rectification
DTrOCR 105M
93.5
DTrOCR: Decoder-only Transformer for Optical Character Recognition
SIGA_S
87.6
Self-supervised Implicit Glyph Attention for Text Recognition
TextScanner
79.4
TextScanner: Reading Characters in Order for Robust Scene Text Recognition
-
CLIP4STR-L (DataComp-1B)
91.4
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
Baek et al.
71.8
What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis
CLIP4STR-L
90.8
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
DPAN
85.5
Look Back Again: Dual Parallel Attention Network for Accurate and Robust Scene Text Recognition
S-GTR
87.3
Visual Semantics Allow for Textual Reasoning Better in Scene Text Recognition
CLIP4STR-B
90.6
CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model
-
CLIP4STR-L*
92.6
An Empirical Study of Scaling Law for OCR
MGP-STR
90.9
Multi-Granularity Prediction for Scene Text Recognition
ViTSTR
72.6
Vision Transformer for Fast and Efficient Scene Text Recognition
CSTR
81.6
Revisiting Classification Perspective on Scene Text Recognition
SAFL
77.5
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss
Yet Another Text Recognizer
80.2
Why You Should Try the Real Data for the Scene Text Recognition
0 of 27 row(s) selected.
Previous
Next