Sarcasm Detection On Big Bench Snarks
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | Accuracy | Paper Title | Repository |
---|---|---|---|
PaLM 540B (few-shot, k=3) | 78.1 | BloombergGPT: A Large Language Model for Finance | - |
Gopher-280B (few-shot, k=5) | 48.3 | Scaling Language Models: Methods, Analysis & Insights from Training Gopher | |
PaLM 2 (few-shot, k=3, Direct) | 78.7 | PaLM 2 Technical Report | |
Bloomberg GPT (few-shot, k=3) | 69.66 | BloombergGPT: A Large Language Model for Finance | - |
BLOOM 176B (few-shot, k=3) | 72.47 | BloombergGPT: A Large Language Model for Finance | - |
PaLM 2(few-shot, k=3, CoT) | 84.8 | PaLM 2 Technical Report | |
GPT-NeoX (few-shot, k=3) | 62.36 | BloombergGPT: A Large Language Model for Finance | - |
Chinchilla-70B (few-shot, k=5) | 58.6 | Training Compute-Optimal Large Language Models |
0 of 8 row(s) selected.