HyperAI

Rgb D Salient Object Detection On Stere

Métriques

Average MAE
S-Measure

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAverage MAES-Measure
uc-net-uncertainty-inspired-rgb-d-saliency0.03990.3
is-depth-really-necessary-for-salient-object0.03791.0
cola-conditional-dropout-and-language-driven0.03990.8
bts-net-bi-directional-transfer-and-selection0.03891.5
uncertainty-inspired-rgb-d-saliency-detection0.03989.8
jl-dcf-joint-learning-and-densely-cooperative0.04290.5
bbs-net-rgb-d-salient-object-detection-with-a0.04190.8
siamese-network-for-rgb-d-salient-object0.03991.1
rethinking-rgb-d-salient-object-detection0.04689.9
contrast-prior-and-fluid-pyramid-integration0.05187.9
spsn-superpixel-prototype-sampling-network0.03590.7
dformer-rethinking-rgbd-representation0.03092.3
bilateral-attention-network-for-rgb-d-salient0.04390.4
uncertainty-inspired-rgb-d-saliency-detection0.03790.4