HyperAI

Rgb D Salient Object Detection On Nju2K

Métriques

Average MAE
S-Measure
max E-Measure
max F-Measure

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAverage MAES-Measuremax E-Measuremax F-Measure
progressively-complementarity-aware-fusion0.05987.792.487.2
learning-selective-self-mutual-attention-for0.05389.492.788.9
cola-conditional-dropout-and-language-driven0.02993.494.791.3
cascade-graph-neural-networks-for-rgb-d0.03591.1--
rethinking-rgb-d-salient-object-detection0.04690.093.990.0
cross-modal-weighting-network-for-rgb-d0.04690.3--
uncertainty-inspired-rgb-d-saliency-detection0.03990.2--
siamese-network-for-rgb-d-salient-object0.04091.194.891.3
uc-net-uncertainty-inspired-rgb-d-saliency0.04389.7--
rgb-d-salient-object-detection-with-cross0.04490.4--
bilateral-attention-network-for-rgb-d-salient0.03991.594.892.0
spsn-superpixel-prototype-sampling-network0.03291.895.092.0
local-background-enclosure-for-rgb-d-salient0.15369.580.374.8
hierarchical-dynamic-filtering-network-for0.03791.1--
contrast-prior-and-fluid-pyramid-integration0.05387.892.687.7
bts-net-bi-directional-transfer-and-selection0.03692.195.492.4
rgbd-salient-object-detection-via-deep-fusion0.20551.472.463.2
select-supplement-and-focus-for-rgb-d0.04389.9--
uncertainty-inspired-rgb-d-saliency-detection0.03990.0--
is-depth-really-necessary-for-salient-object0.04290.2-91.1
accurate-rgb-d-salient-object-detection-via0.04789.4--
depth-quality-aware-salient-object-detection0.05289.7--
depth-induced-multi-scale-recurrent-attention0.05188.692.788.6
a2dele-adaptive-and-attentive-depth-distiller0.051---
dformer-rethinking-rgbd-representation0.02393.796.494.6
a-single-stream-network-for-robust-and-real0.04689.7-90.5
jl-dcf-joint-learning-and-densely-cooperative0.04390.394.490.3