Retinal Vessel Segmentation On Drive
Métriques
AUC
F1 score
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | AUC | F1 score |
---|---|---|
iternet-retinal-image-segmentation-utilizing | 0.9816 | 0.8205 |
deep-learning-architectures-for-diagnosis-of | - | 0.8245 |
bi-directional-convlstm-u-net-with-densley | 0.9789 | 0.8224 |
study-group-learning-improving-retinal-vessel | 0.9886 | 0.8316 |
deep-learning-architectures-for-diagnosis-of | - | 0.8215 |
et-net-a-generic-edge-attention-guidance | - | - |
g-cascade-efficient-cascaded-graph | - | 0.8290 |
u-net-convolutional-networks-for-biomedical | 0.9755 | 0.8142 |
sa-unet-spatial-attention-u-net-for-retinal | 0.9864 | 0.8263 |
rv-gan-retinal-vessel-segmentation-from | - | - |
deep-vessel-segmentation-by-learning | 0.9802 | 0.8263 |
exploring-the-limits-of-data-augmentation-for | 0.9855 | - |
g-cascade-efficient-cascaded-graph | - | 0.8210 |
full-resolution-network-and-dual-threshold | 0.9889 | 0.8316 |
dunet-a-deformable-network-for-retinal-vessel | 0.9802 | 0.8237 |
full-scale-representation-guided-network-for | 0.9823 | 0.8322 |
laddernet-multi-path-networks-based-on-u-net | 0.9793 | 0.8202 |
ce-net-context-encoder-network-for-2d-medical | 0.9779 | - |
enhancing-retinal-vascular-structure | 0.9931 | - |
road-extraction-by-deep-residual-u-net | 0.9779 | 0.8149 |
segmentation-of-blood-vessels-optic-disc | - | 0.75 |