HyperAIHyperAI

Retinal Vessel Segmentation On Chase_Db1

Métriques

AUC
Acc
F1 score
MCC
Sensitivity
mIOU

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
AUC
Acc
F1 score
MCC
Sensitivity
mIOU
Paper TitleRepository
FSG-Net0.99370.97510.81010.79890.85990.8268Full-scale Representation Guided Network for Retinal Vessel Segmentation-
IterNet0.9851-0.8073---IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks-
MERIT-GCASCADE--0.8267-0.84930.7050G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation-
LadderNet0.9839-0.8031---LadderNet: Multi-path networks based on U-Net for medical image segmentation-
U-Net ASPP-----0.8959Resolution-Aware Design of Atrous Rates for Semantic Segmentation Networks-
SA-UNet0.9905-0.8153---SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation-
Residual U-Net0.9779-0.7800---Road Extraction by Deep Residual U-Net-
VGN0.9830-0.8034---Deep Vessel Segmentation By Learning Graphical Connectivity-
DUNet0.9804-0.7883---DUNet: A deformable network for retinal vessel segmentation-
R2U-Net0.9815-0.7928---Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation-
RV-GAN0.9914-0.8957-0.81990.9705RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs using a Novel Multi-scale Generative Adversarial Network-
Study Group Learning0.9920-0.8271-0.8690-Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels-
U-Net0.9772-----U-Net: Convolutional Networks for Biomedical Image Segmentation-
PVT-GCASCADE--0.8251-0.85840.7024G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation-
FR-UNet0.9913-0.8151-0.8798-Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation
0 of 15 row(s) selected.
Retinal Vessel Segmentation On Chase_Db1 | SOTA | HyperAI