HyperAI

Retinal Vessel Segmentation On Chase_Db1

Métriques

AUC
Acc
F1 score
MCC
Sensitivity
mIOU

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
AUC
Acc
F1 score
MCC
Sensitivity
mIOU
Paper TitleRepository
FSG-Net0.99370.97510.81010.79890.85990.8268Full-scale Representation Guided Network for Retinal Vessel Segmentation
IterNet0.9851-0.8073---IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks
MERIT-GCASCADE--0.8267-0.84930.7050G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
LadderNet0.9839-0.8031---LadderNet: Multi-path networks based on U-Net for medical image segmentation
U-Net ASPP-----0.8959Resolution-Aware Design of Atrous Rates for Semantic Segmentation Networks-
SA-UNet0.9905-0.8153---SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation
Residual U-Net0.9779-0.7800---Road Extraction by Deep Residual U-Net
VGN0.9830-0.8034---Deep Vessel Segmentation By Learning Graphical Connectivity
DUNet0.9804-0.7883---DUNet: A deformable network for retinal vessel segmentation-
R2U-Net0.9815-0.7928---Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation
RV-GAN0.9914-0.8957-0.81990.9705RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs using a Novel Multi-scale Generative Adversarial Network
Study Group Learning0.9920-0.8271-0.8690-Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels
U-Net0.9772-----U-Net: Convolutional Networks for Biomedical Image Segmentation
PVT-GCASCADE--0.8251-0.85840.7024G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
FR-UNet0.9913-0.8151-0.8798-Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation
0 of 15 row(s) selected.