HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Segmentation des vaisseaux rétiniens
Retinal Vessel Segmentation On Chase_Db1
Retinal Vessel Segmentation On Chase_Db1
Métriques
AUC
Acc
F1 score
MCC
Sensitivity
mIOU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AUC
Acc
F1 score
MCC
Sensitivity
mIOU
Paper Title
Repository
FSG-Net
0.9937
0.9751
0.8101
0.7989
0.8599
0.8268
Full-scale Representation Guided Network for Retinal Vessel Segmentation
-
IterNet
0.9851
-
0.8073
-
-
-
IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks
-
MERIT-GCASCADE
-
-
0.8267
-
0.8493
0.7050
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
-
LadderNet
0.9839
-
0.8031
-
-
-
LadderNet: Multi-path networks based on U-Net for medical image segmentation
-
U-Net ASPP
-
-
-
-
-
0.8959
Resolution-Aware Design of Atrous Rates for Semantic Segmentation Networks
-
SA-UNet
0.9905
-
0.8153
-
-
-
SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation
-
Residual U-Net
0.9779
-
0.7800
-
-
-
Road Extraction by Deep Residual U-Net
-
VGN
0.9830
-
0.8034
-
-
-
Deep Vessel Segmentation By Learning Graphical Connectivity
-
DUNet
0.9804
-
0.7883
-
-
-
DUNet: A deformable network for retinal vessel segmentation
-
R2U-Net
0.9815
-
0.7928
-
-
-
Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation
-
RV-GAN
0.9914
-
0.8957
-
0.8199
0.9705
RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs using a Novel Multi-scale Generative Adversarial Network
-
Study Group Learning
0.9920
-
0.8271
-
0.8690
-
Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels
-
U-Net
0.9772
-
-
-
-
-
U-Net: Convolutional Networks for Biomedical Image Segmentation
-
PVT-GCASCADE
-
-
0.8251
-
0.8584
0.7024
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
-
FR-UNet
0.9913
-
0.8151
-
0.8798
-
Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation
0 of 15 row(s) selected.
Previous
Next
Retinal Vessel Segmentation On Chase_Db1 | SOTA | HyperAI