HyperAI

Relation Extraction On Ace 2005

Métriques

Cross Sentence
Relation classification F1

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleCross SentenceRelation classification F1
dual-pointer-network-for-fast-extraction-ofNo80.8
entity-relation-extraction-as-multi-turnNo-
combining-neural-networks-and-log-linearNo67.7
end-to-end-relation-extraction-using-lstms-onNo-
named-entity-recognition-and-relationNo-
asking-effective-and-diverse-questions-aNo-
a-multi-gate-encoder-for-joint-entity-andNo-
hyspa-hybrid-span-generation-for-scalableNo-
autoregressive-structured-prediction-withYes-
a-walk-based-model-on-entity-graphs-forNo64.2
entity-relation-and-event-extraction-withYes-
two-are-better-than-one-joint-entity-andNo-
pack-together-entity-and-relation-extractionYes-
relation-extraction-perspective-fromNo61.3
relation-extraction-among-multiple-entitiesNo80.5
gollie-annotation-guidelines-improve-zero--
extracting-entities-and-relations-with-jointNo-
incremental-joint-extraction-of-entityNo-
span-level-model-for-relation-extractionNo-
a-hierarchical-multi-task-approach-forNo-
end-to-end-neural-relation-extraction-withNo-
a-trigger-sense-memory-flow-framework-forYes-
joint-type-inference-on-entities-andNo-
improved-relation-extraction-with-featureNo58.2
a-partition-filter-network-for-joint-entityNo-
a-general-framework-for-informationYes-
a-frustratingly-easy-approach-for-jointYes-
hyspa-hybrid-span-generation-for-scalable--
iter-iterative-transformer-based-entityYes-
going-out-on-a-limb-joint-extraction-ofNo-