HyperAI

Collaborative Filtering On Movielens 1M

Métriques

RMSE

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleRMSE
a-neural-autoregressive-approach-to0.829
neural-network-matrix-factorization0.843
bert4rec-sequential-recommendation-with-
behavior-sequence-transformer-for-e-commerce0.8401
graph-convolutional-matrix-completion0.832
fedgnn-federated-graph-neural-network-for0.848
session-based-recommendations-with-recurrent-
sse-pt-sequential-recommendation-via-
deep-models-of-interactions-across-sets0.860
sequential-variational-autoencoders-for-
180809781-
a-federated-graph-neural-network-framework0.839
dictionary-learning-for-massive-matrix0.866
infinite-recommendation-networks-a-data-
svd-ae-simple-autoencoders-for-collaborative-
hybrid-recommender-system-based-on0.8574
latent-relational-metric-learning-via-memory-
autorec-autoencoders-meet-collaborative0.831
inductive-graph-pattern-learning-for0.857
actions-speak-louder-than-words-trillion-
hyperbolic-recommender-systems-
ghrs-graph-based-hybrid-recommendation-system0.838
collaborative-metric-learning-
kernelized-synaptic-weight-matrices0.824
unifying-knowledge-graph-learning-and-
glocal-k-global-and-local-kernels-for0.8227
hybrid-recommender-system-based-on0.8321
inductive-matrix-completion-using-graph0.829
context-aware-compilation-of-dnn-training-
explainable-knowledge-graph-based-
efficient-retrieval-with-learned-similarities-