Real Time Semantic Segmentation On Cityscapes 1
Métriques
mIoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | mIoU |
---|---|
pp-liteseg-a-superior-real-time-semantic | 73.1 |
segnext-rethinking-convolutional-attention | 79.8% |
dsnet-a-novel-way-to-use-atrous-convolutions | 80.4% |
rtformer-efficient-design-for-real-time | 76.3% |
pidnet-a-real-time-semantic-segmentation | 79.9% |
deep-dual-resolution-networks-for-real-time | 77.4 |
deep-dual-resolution-networks-for-real-time | 79.4 |
pidnet-a-real-time-semantic-segmentation | 78.8% |
csfnet-a-cosine-similarity-fusion-network-for | 74.73 |
rtformer-efficient-design-for-real-time | 79.3% |
liteseg-a-novel-lightweight-convnet-for | 67.8% |
fasterseg-searching-for-faster-real-time-1 | 73.1 |
pidnet-a-real-time-semantic-segmentation | 80.9% |
bisenet-v2-bilateral-network-with-guided | 75.8% |
csfnet-a-cosine-similarity-fusion-network-for | 76.36 |
pp-liteseg-a-superior-real-time-semantic | 78.2 |
in-defence-of-metric-learning-for-speaker | 75.5% |
bisenet-v2-bilateral-network-with-guided | 73.5% |
pp-liteseg-a-superior-real-time-semantic | 76 |
mobile-seed-joint-semantic-segmentation-and | 78.4% |
rethinking-bisenet-for-real-time-semantic | 74.5% |
pp-liteseg-a-superior-real-time-semantic | 75.3 |
rethinking-bisenet-for-real-time-semantic | 77% |
incorporating-luminance-depth-and-color | 68.48% |