HyperAI

Question Answering On Storycloze

Métriques

Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
Accuracy
Paper TitleRepository
Switch Transformer 9B73.3Efficient Language Modeling with Sparse all-MLP-
BLOOMZ96.3Crosslingual Generalization through Multitask Finetuning
Gshard 9B67.9Efficient Language Modeling with Sparse all-MLP-
SparseGPT (175B, 2:4 Sparsity)76.19SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot
T0-3B (CoT fine-tuned)94.5The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning-
FLAN 137B (few-shot, k=10)94.7Finetuned Language Models Are Zero-Shot Learners
SparseGPT (175B, 50% Sparsity)78.87SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot
GPT-3 Large 760M (zero-shot)72.4Language Models are Few-Shot Learners
FLAN 137B (zero-shot)93.4Finetuned Language Models Are Zero-Shot Learners
SparseGPT (175B, 4:8 Sparsity)77.02SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot
Memory chains and semantic supervision78.7--
Finetuned Transformer LM86.5Improving Language Understanding by Generative Pre-Training
KiC-770M94.40Knowledge-in-Context: Towards Knowledgeable Semi-Parametric Language Models-
val-LS-skip76.5A Simple and Effective Approach to the Story Cloze Test-
sMLP – deterministic 9.4B (0-shot)74.7Efficient Language Modeling with Sparse all-MLP-
Reading Strategies Model88.3Improving Machine Reading Comprehension with General Reading Strategies
Hidden Coherence Model77.6Story Comprehension for Predicting What Happens Next-
OPT-175B79.82SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot
HASH Layers 10B (0-shot)64.7Efficient Language Modeling with Sparse all-MLP-
Base Layers 10B (0-shot)61.4Efficient Language Modeling with Sparse all-MLP-
0 of 23 row(s) selected.