HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Réponse à des questions
Question Answering On Squad20 Dev
Question Answering On Squad20 Dev
Métriques
EM
F1
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
EM
F1
Paper Title
Repository
ALBERT base
76.1
79.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
RoBERTa (no data aug)
86.5
89.4
RoBERTa: A Robustly Optimized BERT Pretraining Approach
ALBERT large
79.0
82.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
XLNet (single model)
87.9
90.6
XLNet: Generalized Autoregressive Pretraining for Language Understanding
RMR + ELMo (Model-III)
72.3
74.8
Read + Verify: Machine Reading Comprehension with Unanswerable Questions
-
SemBERT large
80.9
83.6
Semantics-aware BERT for Language Understanding
SpanBERT
-
86.8
SpanBERT: Improving Pre-training by Representing and Predicting Spans
SG-Net
85.1
87.9
SG-Net: Syntax-Guided Machine Reading Comprehension
TinyBERT-6 67M
69.9
73.4
TinyBERT: Distilling BERT for Natural Language Understanding
XLNet+DSC
87.65
89.51
Dice Loss for Data-imbalanced NLP Tasks
ALBERT xlarge
83.1
85.9
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
U-Net
70.3
74.0
U-Net: Machine Reading Comprehension with Unanswerable Questions
ALBERT xxlarge
85.1
88.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
0 of 13 row(s) selected.
Previous
Next