Quantization On Imagenet
Métriques
Top-1 Accuracy (%)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | Top-1 Accuracy (%) |
---|---|
training-multi-bit-quantized-and-binarized | 71.5 |
hmq-hardware-friendly-mixed-precision | 76 |
hmq-hardware-friendly-mixed-precision | 75.45 |
fq-vit-fully-quantized-vision-transformer | 71.61 |
fq-vit-fully-quantized-vision-transformer | 82.71 |
fq-vit-fully-quantized-vision-transformer | 83.31 |
fq-vit-fully-quantized-vision-transformer | 81.20 |
hptq-hardware-friendly-post-training | 73.356 |
r-2-range-regularization-for-model | 68.45 |
hptq-hardware-friendly-post-training | 71.46 |
learned-step-size-quantization | 76.7 |
hptq-hardware-friendly-post-training | 74.216 |
fq-vit-fully-quantized-vision-transformer | 80.51 |
multi-prize-lottery-ticket-hypothesis-finding-1 | 74.03 |
learned-step-size-quantization | 77.878 |
fq-vit-fully-quantized-vision-transformer | 85.03 |
r-2-range-regularization-for-model | 69.79 |
lsq-improving-low-bit-quantization-through | 73.8 |
learned-step-size-quantization | 77.34 |
lsq-improving-low-bit-quantization-through | 71.7 |
hptq-hardware-friendly-post-training | 77.092 |
hptq-hardware-friendly-post-training | 78.972 |
hmq-hardware-friendly-mixed-precision | 70.9 |
hmq-hardware-friendly-mixed-precision | 76.4 |
fq-vit-fully-quantized-vision-transformer | 82.97 |
r-2-range-regularization-for-model | 69.64 |
fq-vit-fully-quantized-vision-transformer | 79.17 |