HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Ingénierie des prompts
Prompt Engineering On Oxford Iiit Pet Dataset
Prompt Engineering On Oxford Iiit Pet Dataset
Métriques
Harmonic mean
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Harmonic mean
Paper Title
Repository
CLIP
94.12
Learning Transferable Visual Models From Natural Language Supervision
-
HPT++
96.91
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
-
RPO
96.05
Read-only Prompt Optimization for Vision-Language Few-shot Learning
-
MaPLe
96.58
MaPLe: Multi-modal Prompt Learning
-
DePT
96.37
DePT: Decoupled Prompt Tuning
-
HPT
96.71
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
-
ProMetaR
96.49
Prompt Learning via Meta-Regularization
-
MetaPrompt
96.26
Learning Domain Invariant Prompt for Vision-Language Models
-
PromptSRC
96.30
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
-
CoPrompt
96.87
Consistency-guided Prompt Learning for Vision-Language Models
-
MMRL
96.74
MMRL: Multi-Modal Representation Learning for Vision-Language Models
-
CoCoOp
96.43
Conditional Prompt Learning for Vision-Language Models
-
PromptKD
97.15
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
-
0 of 13 row(s) selected.
Previous
Next
Prompt Engineering On Oxford Iiit Pet Dataset | SOTA | HyperAI