HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Ingénierie des prompts
Prompt Engineering On Oxford 102 Flower
Prompt Engineering On Oxford 102 Flower
Métriques
Harmonic mean
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Harmonic mean
Paper Title
Repository
CLIP
74.83
Learning Transferable Visual Models From Natural Language Supervision
-
PromptSRC
85.95
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
-
CoPrompt
85.71
Consistency-guided Prompt Learning for Vision-Language Models
-
HPT
87.16
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
-
MetaPrompt
84.52
Learning Domain Invariant Prompt for Vision-Language Models
-
ProMetaR
86.70
Prompt Learning via Meta-Regularization
-
DePT
86.46
DePT: Decoupled Prompt Tuning
-
CoCoOp
81.71
Conditional Prompt Learning for Vision-Language Models
-
RPO
84.50
Read-only Prompt Optimization for Vision-Language Few-shot Learning
-
HPT++
85.85
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
-
PromptKD
90.24
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
-
MaPLe
82.56
MaPLe: Multi-modal Prompt Learning
-
MMRL
86.78
MMRL: Multi-Modal Representation Learning for Vision-Language Models
-
0 of 13 row(s) selected.
Previous
Next