HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Prompt Engineering
Prompt Engineering On Imagenet S
Prompt Engineering On Imagenet S
Métriques
Top-1 accuracy %
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Top-1 accuracy %
Paper Title
Repository
HPT++
49.28
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
CoCoOp
48.75
Conditional Prompt Learning for Vision-Language Models
MMRL
49.17
MMRL: Multi-Modal Representation Learning for Vision-Language Models
CoPrompt
49.43
Consistency-guided Prompt Learning for Vision-Language Models
POMP
49.8
Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition
MaPLe
49.15
MaPLe: Multi-modal Prompt Learning
CLIP
46.15
Learning Transferable Visual Models From Natural Language Supervision
PromptSRC
49.55
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
HPT
49.36
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
0 of 9 row(s) selected.
Previous
Next