HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Prompt Engineering
Prompt Engineering On Imagenet R
Prompt Engineering On Imagenet R
Métriques
Top-1 accuracy %
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Top-1 accuracy %
Paper Title
Repository
MaPLe
76.98
MaPLe: Multi-modal Prompt Learning
POMP
77.9
Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition
HPT
77.38
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
CoPrompt
77.51
Consistency-guided Prompt Learning for Vision-Language Models
PromptSRC
77.80
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
CoCoOP
76.18
Conditional Prompt Learning for Vision-Language Models
CLIP
73.96
Learning Transferable Visual Models From Natural Language Supervision
HPT++
77.52
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
MMRL
77.53
MMRL: Multi-Modal Representation Learning for Vision-Language Models
0 of 9 row(s) selected.
Previous
Next