HyperAI

Prompt Engineering On Imagenet A

Métriques

Top-1 accuracy %

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleTop-1 accuracy %
learning-hierarchical-prompt-with-structured50.85
maple-multi-modal-prompt-learning50.90
self-regulating-prompts-foundational-model50.90
conditional-prompt-learning-for-vision50.63
prompt-pre-training-with-twenty-thousand-151.6
mmrl-multi-modal-representation-learning-for51.20
consistency-guided-prompt-learning-for-vision50.50
learning-transferable-visual-models-from47.77
hpt-hierarchically-prompting-vision-language51.18