HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Prompt Engineering
Prompt Engineering On Imagenet A
Prompt Engineering On Imagenet A
Métriques
Top-1 accuracy %
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Top-1 accuracy %
Paper Title
Repository
HPT
50.85
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
MaPLe
50.90
MaPLe: Multi-modal Prompt Learning
PromptSRC
50.90
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
CoCoOp
50.63
Conditional Prompt Learning for Vision-Language Models
POMP
51.6
Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition
MMRL
51.20
MMRL: Multi-Modal Representation Learning for Vision-Language Models
CoPrompt
50.50
Consistency-guided Prompt Learning for Vision-Language Models
CLIP
47.77
Learning Transferable Visual Models From Natural Language Supervision
HPT++
51.18
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
0 of 9 row(s) selected.
Previous
Next