HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Ingénierie des prompts
Prompt Engineering On Eurosat
Prompt Engineering On Eurosat
Métriques
Harmonic mean
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Harmonic mean
Paper Title
Repository
PromptSRC
82.32
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
-
CoPrompt
85.84
Consistency-guided Prompt Learning for Vision-Language Models
-
MMRL
87.21
MMRL: Multi-Modal Representation Learning for Vision-Language Models
-
HPT++
87.36
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
-
MaPLe
82.35
MaPLe: Multi-modal Prompt Learning
-
DePT
84.88
DePT: Decoupled Prompt Tuning
-
PromptKD
89.14
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
-
MetaPrompt
83.38
Learning Domain Invariant Prompt for Vision-Language Models
-
CLIP
60.03
Learning Transferable Visual Models From Natural Language Supervision
-
RPO
76.79
Read-only Prompt Optimization for Vision-Language Few-shot Learning
-
CoCoOp
71.21
Conditional Prompt Learning for Vision-Language Models
-
HPT
84.82
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
-
ProMetaR
85.30
Prompt Learning via Meta-Regularization
-
0 of 13 row(s) selected.
Previous
Next
Prompt Engineering On Eurosat | SOTA | HyperAI