HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Prompt Engineering
Prompt Engineering On Eurosat
Prompt Engineering On Eurosat
Métriques
Harmonic mean
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Harmonic mean
Paper Title
Repository
PromptSRC
82.32
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
CoPrompt
85.84
Consistency-guided Prompt Learning for Vision-Language Models
MMRL
87.21
MMRL: Multi-Modal Representation Learning for Vision-Language Models
HPT++
87.36
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
MaPLe
82.35
MaPLe: Multi-modal Prompt Learning
DePT
84.88
DePT: Decoupled Prompt Tuning
-
PromptKD
89.14
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
MetaPrompt
83.38
Learning Domain Invariant Prompt for Vision-Language Models
CLIP
60.03
Learning Transferable Visual Models From Natural Language Supervision
RPO
76.79
Read-only Prompt Optimization for Vision-Language Few-shot Learning
CoCoOp
71.21
Conditional Prompt Learning for Vision-Language Models
HPT
84.82
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
ProMetaR
85.30
Prompt Learning via Meta-Regularization
0 of 13 row(s) selected.
Previous
Next