HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Ingénierie des prompts
Prompt Engineering On Dtd
Prompt Engineering On Dtd
Métriques
Harmonic mean
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Harmonic mean
Paper Title
Repository
MetaPrompt
68.35
Learning Domain Invariant Prompt for Vision-Language Models
-
DePT
71.09
DePT: Decoupled Prompt Tuning
-
CLIP
56.37
Learning Transferable Visual Models From Natural Language Supervision
-
CoCoOp
64.85
Conditional Prompt Learning for Vision-Language Models
-
CoPrompt
72.79
Consistency-guided Prompt Learning for Vision-Language Models
-
RPO
68.61
Read-only Prompt Optimization for Vision-Language Few-shot Learning
-
PromptKD
77.94
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
-
MMRL
73.82
MMRL: Multi-Modal Representation Learning for Vision-Language Models
-
MaPLe
68.16
MaPLe: Multi-modal Prompt Learning
-
HPT
72.16
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
-
HPT++
74.23
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
-
ProMetaR
72.31
Prompt Learning via Meta-Regularization
-
PromptSRC
71.75
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
-
0 of 13 row(s) selected.
Previous
Next