HyperAI

Photo Geolocation Estimation On Im2Gps3K

Métriques

City level (25 km)
Continent level (2500 km)
Country level (750 km)
Region level (200 km)
Street level (1 km)
Training Images

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
City level (25 km)
Continent level (2500 km)
Country level (750 km)
Region level (200 km)
Street level (1 km)
Training Images
Paper TitleRepository
Translocator31.180.158.946.711.84.7MWhere in the World is this Image? Transformer-based Geo-localization in the Wild
PIGEOTTO36.785.372.453.811.34.5MPIGEON: Predicting Image Geolocations
GeoCLIP34.583.869.750.714.14.7MGeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
GeoDecoder33.576.161.045.912.84.7MWhere We Are and What We're Looking At: Query Based Worldwide Image Geo-localization Using Hierarchies and Scenes-
StreetCLIP (Zero-Shot) 22.4 80.461.3 37.4-1.1MLearning Generalized Zero-Shot Learners for Open-Domain Image Geolocalization
Im2GPS (kNN, sigma = 4)19.455.938.926.97.26MRevisiting IM2GPS in the Deep Learning Era-
ISNs (M, f*, S3)28.066.049.736.610.54.7MGeolocation Estimation of Photos using a Hierarchical Model and Scene Classification-
base (M, f*)27.066.049.235.69.74.7MGeolocation Estimation of Photos using a Hierarchical Model and Scene Classification-
base (L, m)24.965.848.834.08.34.7MGeolocation Estimation of Photos using a Hierarchical Model and Scene Classification-
Im2GPS ([M] 7011C)14.252.733.521.33.76MRevisiting IM2GPS in the Deep Learning Era-
CPlaNet (1-5, PlaNet)26.564.448.634.610.230.3MCPlaNet: Enhancing Image Geolocalization by Combinatorial Partitioning of Maps-
Im2GPS ([L] 7011C)14.852.432.621.44.06MRevisiting IM2GPS in the Deep Learning Era-
0 of 12 row(s) selected.