HyperAI

Photo Geolocation Estimation On Im2Gps

Métriques

City level (25 km)
Continent level (2500 km)
Country level (750 km)
Median Error (km)
Reference images
Region level (200 km)
Street level (1 km)
Training images

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleCity level (25 km)Continent level (2500 km)Country level (750 km)Median Error (km)Reference imagesRegion level (200 km)Street level (1 km)Training images
pigeon-predicting-image-geolocations40.991.182.370.54.5M63.314.84.5M
geolocation-estimation-of-photos-using-a35.079.764.1-049.813.54.7M
planet-photo-geolocation-with-convolutional18.165.845.6-030.06.36.2M
revisiting-im2gps-in-the-deep-learning-era33.371.357.4-044.312.26M
revisiting-im2gps-in-the-deep-learning-era33.373.461.6-28M47.714.46M
geolocation-estimation-of-photos-using-a43.080.266.7-051.916.94.7M
planet-photo-geolocation-with-convolutional24.571.353.6-037.68.491M
cplanet-enhancing-image-geolocalization-by37.178.562.0-046.616.530.3M
revisiting-im2gps-in-the-deep-learning-era21.963.749.4-034.66.86M
geolocation-estimation-of-photos-using-a40.978.565.4-051.515.24.7M
learning-generalized-zero-shot-learners-for28.388.274.7-045.1-1.1M