Person Re Identification On Market 1501 C
Métriques
Rank-1
mAP
mINP
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | Rank-1 | mAP | mINP |
---|---|---|---|
omni-scale-feature-learning-for-person-re | 30.94 | 10.37 | 0.23 |
alignedreid-surpassing-human-level | 31.00 | 10.95 | 0.32 |
a-person-re-identification-data-augmentation | 27.72 | 8.26 | 0.24 |
devil-in-the-details-towards-accurate-single | 42.92 | 18.24 | 0.67 |
benchmarks-for-corruption-invariant-person-re | - | - | - |
mixed-high-order-attention-network-for-person | 33.29 | 10.69 | 0.38 |
abd-net-attentive-but-diverse-person-re | 29.65 | 9.81 | 0.26 |
batch-feature-erasing-for-person-re | 33.79 | 10.95 | 0.32 |
top-db-net-top-dropblock-for-activation | 28.56 | 8.90 | 0.20 |
joint-discriminative-and-generative-learning | 31.75 | 9.96 | 0.35 |
relation-network-for-person-re-identification | 36.57 | 14.23 | 0.48 |
fastreid-a-pytorch-toolbox-for-real-world | 34.13 | 11.54 | 0.29 |
transreid-transformer-based-object-re | 53.19 | 27.38 | 1.98 |
bags-of-tricks-and-a-strong-baseline-for-deep | 27.05 | 8.42 | 0.20 |
learning-discriminative-features-with | 29.56 | 9.72 | 0.29 |
beyond-part-models-person-retrieval-with | 34.93 | 12.72 | 0.41 |
deep-learning-for-person-re-identification-a | 31.90 | 12.13 | 0.35 |
a-coarse-to-fine-pyramidal-model-for-person | 35.72 | 12.75 | 0.36 |
unsupervised-pre-training-for-person-re | - | - | - |
learning-diverse-features-with-part-level | 37.56 | 14.23 | 0.48 |
a-person-re-identification-data-augmentation | 29.35 | 9.08 | 0.23 |
perceive-where-to-focus-learning-visibility | 31.17 | 10.15 | 0.31 |