HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Pedestrian Attribute Recognition
Pedestrian Attribute Recognition On Pa 100K
Pedestrian Attribute Recognition On Pa 100K
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
strongBaseline(ours)
78.56
Rethinking of Pedestrian Attribute Recognition: Realistic Datasets with Efficient Method
PATH (Partial FT)
90.8
HumanBench: Towards General Human-centric Perception with Projector Assisted Pretraining
HP-net
72.19%
HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis
UniHCP (finetune)
86.18
UniHCP: A Unified Model for Human-Centric Perceptions
Label2Label
79.23
Label2Label: A Language Modeling Framework for Multi-Attribute Learning
APTM
80.17
Towards Unified Text-based Person Retrieval: A Large-scale Multi-Attribute and Language Search Benchmark
Hulk(Finetune, ViT-B)
87.85
Hulk: A Universal Knowledge Translator for Human-Centric Tasks
Hulk(Finetune, ViT-L)
88.97
Hulk: A Universal Knowledge Translator for Human-Centric Tasks
Attribute-Specific Localization
77.08%
Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization
C2T-Net
87.2
C2T-Net: Channel-Aware Cross-Fused Transformer-Style Networks for Pedestrian Attribute Recognition
SOLIDER
86.38
Beyond Appearance: a Semantic Controllable Self-Supervised Learning Framework for Human-Centric Visual Tasks
0 of 11 row(s) selected.
Previous
Next