HyperAI

Panoptic Segmentation On Mapillary Val

Métriques

PQ
PQst
PQth
mIoU

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
PQ
PQst
PQth
mIoU
Paper TitleRepository
Panoptic-DeepLab (SWideRNet-(1, 1, 4.5), multi-scale)44.851.939.360.0Scaling Wide Residual Networks for Panoptic Segmentation-
EfficientPS40.6---EfficientPS: Efficient Panoptic Segmentation
Panoptic FCN* (ResNet-FPN)36.9-32.9-Fully Convolutional Networks for Panoptic Segmentation
OneFormer (DiNAT-L, single-scale)46.754.940.561.7OneFormer: One Transformer to Rule Universal Image Segmentation
Panoptic-DeepLab (X71)40.5---Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
JSIS-Net (ResNet-50)17.6---Panoptic Segmentation with a Joint Semantic and Instance Segmentation Network-
Panoptic FCN* (ResNet-50-FPN)-42.3--Fully Convolutional Networks for Panoptic Segmentation
AdaptIS (ResNeXt-101)40.3--56.8AdaptIS: Adaptive Instance Selection Network
Axial-DeepLab-L (multi-scale)41.151.333.458.4Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation
HRNet-OCR (Hierarchical Multi-Scale Attention)17.6---Hierarchical Multi-Scale Attention for Semantic Segmentation
Panoptic FCN* (Swin-L, single-scale)45.752.140.8-Fully Convolutional Networks for Panoptic Segmentation
OneFormer (ConvNeXt-L, single-scale)46.454.040.661.6OneFormer: One Transformer to Rule Universal Image Segmentation
Mask2Former + Intra-Batch Supervision (ResNet-50)42.252.034.9-Intra-Batch Supervision for Panoptic Segmentation on High-Resolution Images
0 of 13 row(s) selected.