HyperAI

Panoptic Segmentation On Coco Test Dev

Métriques

PQ
PQst
PQth

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
PQ
PQst
PQth
Paper TitleRepository
AUNet (ResNet-101-FPN)45.231.354.4Attention-guided Unified Network for Panoptic Segmentation-
REFINE (ResNet-101-DCN)49.637.757.5REFINE: Prediction Fusion Network for Panoptic Segmentation-
CMT-DeepLab (single-scale)55.746.861.6CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation
Axial-DeepLab-L (multi-scale)44.236.849.2Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation
Mask2Former (Swin-L)58.348.165.1Masked-attention Mask Transformer for Universal Image Segmentation
Panoptic-DeepLab (Xception-71)41.435.945.1Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
AdaptIS (ResNeXt-101)42.831.850.1AdaptIS: Adaptive Instance Selection Network
Panoptic-DeepLab (SWideRNet-[1, 1, 4], multi-scale)46.538.252.0Scaling Wide Residual Networks for Panoptic Segmentation-
K-Net (Swin-L)55.246.261.2K-Net: Towards Unified Image Segmentation
REFINE (ResNeXt-101-DCN)51.539.259.6REFINE: Prediction Fusion Network for Panoptic Segmentation-
Panoptic SegFormer (ResNet-101)50.943.056.2Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
Panoptic SegFormer (Swin-L)56.247.062.3Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
JSIS-Net27.223.429.6Panoptic Segmentation with a Joint Semantic and Instance Segmentation Network-
MaX-DeepLab-L (single-scale)51.342.457.2MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers
AUNet (ResNet-152-FPN)45.531.654.7Attention-guided Unified Network for Panoptic Segmentation-
OCFusion (ResNeXt-101-FPN)46.635.754.0Learning Instance Occlusion for Panoptic Segmentation
COPS (ResNet-50)38.534.841.0Combinatorial Optimization for Panoptic Segmentation: A Fully Differentiable Approach
K-Net (R101-FPN-DCN)48.339.754K-Net: Towards Unified Image Segmentation
Panoptic FCN*++ (DCN-101-FPN)47.538.253.7Fully Convolutional Networks for Panoptic Segmentation
MaskConver (ResNet50, single-scale)53.658.945.6MaskConver: Revisiting Pure Convolution Model for Panoptic Segmentation
0 of 38 row(s) selected.