Panoptic Segmentation On Coco Minival
Métriques
AP
PQ
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | AP | PQ |
---|---|---|
focal-modulation-networks | 48.4 | 57.9 |
a-simple-framework-for-open-vocabulary | 53.2 | 59.5 |
visual-attention-network | - | 58.2 |
fully-convolutional-networks-for-panoptic | - | 44.3 |
per-pixel-classification-is-not-all-you-need | - | 52.7 |
k-means-mask-transformer | - | 58.0 |
end-to-end-object-detection-with-transformers | 33 | 45.1 |
axial-deeplab-stand-alone-axial-attention-for | - | 43.9 |
end-to-end-object-detection-with-transformers | 39.7 | 44.1 |
k-means-mask-transformer | - | 58.1 |
mask-dino-towards-a-unified-transformer-based-1 | 50.9 | 59.4 |
oneformer-one-transformer-to-rule-universal | 52.0 | 60.0 |
axial-deeplab-stand-alone-axial-attention-for | - | - |
k-means-mask-transformer | - | 57.9 |
dilated-neighborhood-attention-transformer | 49.2 | 58.5 |
oneformer-one-transformer-to-rule-universal | 49.0 | 57.9 |
hyperseg-towards-universal-visual | - | 61.2 |
axial-deeplab-stand-alone-axial-attention-for | - | 43.4 |
oneformer-one-transformer-to-rule-universal | 49.2 | 58.0 |
vision-transformer-adapter-for-dense | 48.9 | 58.4 |
fully-convolutional-networks-for-panoptic | - | - |
panoptic-segformer | - | 55.8 |
max-deeplab-end-to-end-panoptic-segmentation | - | 51.1 |
masked-attention-mask-transformer-for | 48.6 | 57.8 |
hierarchical-open-vocabulary-universal-image-1 | - | 58.1 |
cmt-deeplab-clustering-mask-transformers-for-1 | - | 55.3 |
resnest-split-attention-networks | - | 47.9 |
panoptic-segformer | - | 50.6 |