HyperAI

Panoptic Segmentation On Cityscapes Val

Métriques

AP
PQ
PQst
PQth
mIoU

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
AP
PQ
PQst
PQth
mIoU
Paper TitleRepository
AFF-Base (single-scale, point-based Mask2Former)46.267.771.562.583.0AutoFocusFormer: Image Segmentation off the Grid
AdaptIS (ResNeXt-101)36.362.064.458.779.2AdaptIS: Adaptive Instance Selection Network
AUNet (ResNet-101-FPN)34.459.062.154.875.6Attention-guided Unified Network for Panoptic Segmentation-
DiNAT-L (Mask2Former)44.567.2--83.4Dilated Neighborhood Attention Transformer
TASCNet (ResNet-50, multi-scale)3960.463.356.178Learning to Fuse Things and Stuff-
Panoptic-DeepLab (X71)38.564.1--81.5Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
AdaptIS (ResNet-101)33.960.662.957.577.2AdaptIS: Adaptive Instance Selection Network
Panoptic FCN* (ResNet-50-FPN)--66.6--Fully Convolutional Networks for Panoptic Segmentation
CMT-DeepLab (MaX-S, single-scale, IN-1K)-64.6--81.4CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation
OneFormer (ConvNeXt-XL, single-scale)46.768.4--83.6OneFormer: One Transformer to Rule Universal Image Segmentation
Dynamically Instantiated Network (ResNet-101)28.653.862.142.579.8Weakly- and Semi-Supervised Panoptic Segmentation
DeeperLab (Xception-71)-56.5---DeeperLab: Single-Shot Image Parser-
Axial-DeepLab-XL (Mapillary Vistas, multi-scale) 44.268.5--84.6Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation
COPS (ResNet-50)34.162.167.255.179.3Combinatorial Optimization for Panoptic Segmentation: A Fully Differentiable Approach
Panoptic FCN* (Swin-L, Cityscapes-fine)-- 70.659.5-Fully Convolutional Networks for Panoptic Segmentation
AFF-Small (single-scale, point-based Mask2Former)44.266.970.861.582.2AutoFocusFormer: Image Segmentation off the Grid
Panoptic FPN (ResNet-101)33.058.162.552.075.7Panoptic Feature Pyramid Networks
OneFormer (Swin-L, single-scale)45.667.2--83.0OneFormer: One Transformer to Rule Universal Image Segmentation
TASCNet (ResNet-50)37.659.261.55677.8Learning to Fuse Things and Stuff-
OneFormer (DiNAT-L, single-scale)45.667.6--83.1OneFormer: One Transformer to Rule Universal Image Segmentation
0 of 36 row(s) selected.