HyperAI

Optical Flow Estimation On Kitti 2015 Train

Métriques

EPE
F1-all

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleEPEF1-all
volumetric-correspondence-networks-for8.3625.1
craft-cross-attentional-flow-transformer-for4.8817.5
raft-recurrent-all-pairs-field-transforms-for5.0417.4
pwc-net-cnns-for-optical-flow-using-pyramid10.3533.7
fastflownet-a-lightweight-network-for-fast12.2433.1
learning-to-estimate-hidden-motions-with4.6917.1
flownet-20-evolution-of-optical-flow10.0830.0
flowformer-a-transformer-architecture-for4.0914.7
hierarchical-discrete-distribution13.1724.0
rethinking-raft-for-efficient-optical-flow4.8316.45
recurrent-partial-kernel-network-for3.7913.0
rapidflow-recurrent-adaptable-pyramids-with5.8717.7
deep-equilibrium-optical-flow-estimation3.7613.0
global-matching-with-overlapping-attention4.2415.4
maskflownet-asymmetric-feature-matching-with-23.1
learning-optical-flow-from-a-few-matches6.8019.3
separable-flow-learning-motion-cost-volumes4.6015.9
dpflow-adaptive-optical-flow-estimation-with-13.3711.1