HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Reconnaissance d'objets
Object Recognition On Shape Bias
Object Recognition On Shape Bias
Métriques
shape bias
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
shape bias
Paper Title
Repository
ViT-22B-384
86.4
Scaling Vision Transformers to 22 Billion Parameters
-
ResNet-50
22.1
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
-
ViT-22B-560
83.8
Scaling Vision Transformers to 22 Billion Parameters
-
GoogLeNet
31.2
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
-
ViT-22B-224
78.0
Scaling Vision Transformers to 22 Billion Parameters
-
CLIP (ViT-B)
79.9
Learning Transferable Visual Models From Natural Language Supervision
-
SWSL (ResNet-50)
28.6
Billion-scale semi-supervised learning for image classification
-
SimCLR (ResNet-50x4)
40.7
A Simple Framework for Contrastive Learning of Visual Representations
-
Parti
91.7
Intriguing properties of generative classifiers
-
VGG-16
17.2
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
-
Stable Diffusion
92.7
Intriguing properties of generative classifiers
-
SimCLR (ResNet-50x1)
38.9
A Simple Framework for Contrastive Learning of Visual Representations
-
SWSL (ResNeXt-101)
49.8
Billion-scale semi-supervised learning for image classification
-
ResNet-50 (with strong augmentations)
62.2
The Origins and Prevalence of Texture Bias in Convolutional Neural Networks
-
ResNet-50 (L2 eps 5.0 adv trained)
69.5
Do Adversarially Robust ImageNet Models Transfer Better?
-
SimCLR (ResNet-50x2)
41.7
A Simple Framework for Contrastive Learning of Visual Representations
-
Imagen
98.7
Intriguing properties of generative classifiers
-
AlexNet
42.9
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
-
0 of 18 row(s) selected.
Previous
Next