HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Object Detection
Object Detection On Lvis V1 0 Val
Object Detection On Lvis V1 0 Val
Métriques
box AP
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
box AP
Paper Title
Repository
R101-MaskRCNN-LOCE
29
Exploring Classification Equilibrium in Long-Tailed Object Detection
-
DiverGen (Swin-L)
51.2
DiverGen: Improving Instance Segmentation by Learning Wider Data Distribution with More Diverse Generative Data
CenterNet2 (Swin-L w/ X-Paste + Copy-Paste)
50.9
X-Paste: Revisiting Scalable Copy-Paste for Instance Segmentation using CLIP and StableDiffusion
Co-DETR (single-scale)
68.0
DETRs with Collaborative Hybrid Assignments Training
GLEE-Pro
55.7
General Object Foundation Model for Images and Videos at Scale
ViTDet-L
51.2
Exploring Plain Vision Transformer Backbones for Object Detection
Grounding DINO 1.5 Pro
63.5
Grounding DINO 1.5: Advance the "Edge" of Open-Set Object Detection
EVA
62.2
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
R50-MaskRCNN-LOCE
27.4
Exploring Classification Equilibrium in Long-Tailed Object Detection
-
InternImage-H
63.2
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
Eff-B7 NAS-FPN (1280, Copy-Paste pre-training))
41.6
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
RichSem (Focal-H + ImageNet as weakly-supervised extra data)
61.2
Learning from Rich Semantics and Coarse Locations for Long-tailed Object Detection
ViTDet-H
53.4
Exploring Plain Vision Transformer Backbones for Object Detection
0 of 13 row(s) selected.
Previous
Next