HyperAI

Object Detection On Crowdhuman Full Body

Métriques

AP
mMR

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
AP
mMR
Paper TitleRepository
MMPedestron97.130.8When Pedestrian Detection Meets Multi-Modal Learning: Generalist Model and Benchmark Dataset
NOH-NMS89.043.9NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination
Adaptive NMS (Faster RCNN, ResNet50)84.7149.73Adaptive NMS: Refining Pedestrian Detection in a Crowd-
UniHCP (finetune)92.541.6UniHCP: A Unified Model for Human-Centric Perceptions
Hulk(Finetune, ViT-L)9336.5Hulk: A Universal Knowledge Translator for Human-Centric Tasks
DDQ R-CNN (R50)93.540.4Dense Distinct Query for End-to-End Object Detection
Hulk(Finetune, ViT-B)92.440.7Hulk: A Universal Knowledge Translator for Human-Centric Tasks
IterDet (Faster RCNN, ResNet50, 1 iteration)84.4349.12IterDet: Iterative Scheme for Object Detection in Crowded Environments
DDQ FCN (R50 One-Stage)92.741.0Dense Distinct Query for End-to-End Object Detection
Progressive DETR94.137.7Progressive End-to-End Object Detection in Crowded Scenes
Beta R-CNN89.640.3Beta R-CNN: Looking into Pedestrian Detection from Another Perspective-
InternImage-H97.2-InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
PS-RCNN (Faster RCNN, ResNet50, COCO Instance Masks87.94-PS-RCNN: Detecting Secondary Human Instances in a Crowd via Primary Object Suppression-
PS-RCNN (Faster RCNN, ResNet50)86.05-PS-RCNN: Detecting Secondary Human Instances in a Crowd via Primary Object Suppression-
CrowdDet90.741.4Detection in Crowded Scenes: One Proposal, Multiple Predictions
Faster RCNN (ResNet50)84.9550.49CrowdHuman: A Benchmark for Detecting Human in a Crowd
DDQ DETR (R50)93.839.7Dense Distinct Query for End-to-End Object Detection
IterDet (Faster RCNN, ResNet50, 2 iterations)88.0849.44IterDet: Iterative Scheme for Object Detection in Crowded Environments
V2F-Net91.0342.28V2F-Net: Explicit Decomposition of Occluded Pedestrian Detection-
0 of 19 row(s) selected.