HyperAI

Object Detection On Coco 2017

Métriques

mAP

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèlemAP
unireplknet-a-universal-perception-large54.3
biformer-vision-transformer-with-bi-level48.6
stochastic-subsampling-with-average-pooling-
paint-transformer-feed-forward-neural-
maxvit-multi-axis-vision-transformer-
yolo-drone-airborne-real-time-detection-of35.45
unireplknet-a-universal-perception-large51.7
unireplknet-a-universal-perception-large54.8
dat-spatially-dynamic-vision-transformer-with-
debiformer-vision-transformer-with-deformable48.5
maxvit-multi-axis-vision-transformer-
mixmim-mixed-and-masked-image-modeling-for52.2
on-the-ideal-number-of-groups-for-isometric-
biformer-vision-transformer-with-bi-level47.8
unireplknet-a-universal-perception-large53
debiformer-vision-transformer-with-deformable47.5
dat-spatially-dynamic-vision-transformer-with-
benchmark-for-generic-product-detection-a-
unireplknet-a-universal-perception-large56.4
debiformer-vision-transformer-with-deformable47.1
debiformer-vision-transformer-with-deformable45.6
maxvit-multi-axis-vision-transformer-
mixmim-mixed-and-masked-image-modeling-for54.1
unireplknet-a-universal-perception-large55.8