HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Object Detection In Aerial Images
Object Detection In Aerial Images On Dota 1
Object Detection In Aerial Images On Dota 1
Métriques
mAP
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
mAP
Paper Title
Repository
EAutoDet
77.05%
EAutoDet: Efficient Architecture Search for Object Detection
-
RSP-ViTAEv2-S-FPN-ORCN
77.72%
An Empirical Study of Remote Sensing Pretraining
IMP+MTP(InternImage-XL)
80.77%
MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining
ViT-B + RVSA-ORCN
81.01%
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
ViTAE-B + RVSA-ORCN
81.24%
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
LSKNet-T
81.37%
LSKNet: A Foundation Lightweight Backbone for Remote Sensing
ARC
81.77%
Adaptive Rotated Convolution for Rotated Object Detection
CFC-NET
73.50%
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images
DecoupleNet D2
78.04%
DecoupleNet: A Lightweight Backbone Network With Efficient Feature Decoupling for Remote Sensing Visual Tasks
Oriented RepPoints
77.63%
Oriented RepPoints for Aerial Object Detection
ReDet
80.10%
ReDet: A Rotation-equivariant Detector for Aerial Object Detection
DLA+S2A-Net
76.95%
Dynamic Anchor Learning for Arbitrary-Oriented Object Detection
DRN
73.23%
Dynamic Refinement Network for Oriented and Densely Packed Object Detection
Oriented RCNN
80.87%
Oriented R-CNN for Object Detection
SCRDet
72.61%
SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects
APE
75.75
Adaptive Period Embedding for Representing Oriented Objects in Aerial Images
-
LSKNet-S*
81.85%
LSKNet: A Foundation Lightweight Backbone for Remote Sensing
RoI Transformer
69.56%
Learning RoI Transformer for Detecting Oriented Objects in Aerial Images
CFA
76.67%
Beyond Bounding-Box: Convex-Hull Feature Adaptation for Oriented and Densely Packed Object Detection
GWD+R3Det
80.23%
Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss
0 of 58 row(s) selected.
Previous
Next