Object Counting On Pascal Voc 2007 Count Test
Métriques
m-reIRMSE-nz
m-relRMSE
mRMSE
mRMSE-nz
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | m-reIRMSE-nz | m-relRMSE | mRMSE | mRMSE-nz | Paper Title | Repository |
---|---|---|---|---|---|---|
LC-ResFCN | 0.61 | 0.17 | 0.31 | 1.20 | Where are the Blobs: Counting by Localization with Point Supervision | |
LC-PSPNet | 0.70 | 0.20 | 0.35 | 1.32 | Where are the Blobs: Counting by Localization with Point Supervision | |
Supervised Density Map | 0.61 | 0.17 | 0.29 | 1.14 | Object Counting and Instance Segmentation with Image-level Supervision | |
glance-noft-2L | 0.73 | 0.27 | 0.50 | 1.83 | Counting Everyday Objects in Everyday Scenes | |
Seq-sub-ft-3x3 | 0.68 | 0.22 | 0.43 | 1.65 | Counting Everyday Objects in Everyday Scenes | |
Omnicount | - | - | 0.0023 | 0.009 | OmniCount: Multi-label Object Counting with Semantic-Geometric Priors | - |
ens | 0.65 | 0.20 | 0.42 | 1.68 | Counting Everyday Objects in Everyday Scenes | |
Fast-RCNN | 0.85 | 0.26 | 0.50 | 1.92 | Counting Everyday Objects in Everyday Scenes |
0 of 8 row(s) selected.