HyperAI

Object Counting On Fsc147

Métriques

MAE(test)
MAE(val)
RMSE(test)
RMSE(val)

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleMAE(test)MAE(val)RMSE(test)RMSE(val)
a-novel-unified-architecture-for-low-shot7.919.5254.2843.00
learning-to-count-anything-reference-less17.1217.49104.5358.81
iterative-correlation-based-feature14.3215.2885.5447.20
few-shot-object-counting-and-detection16.79-123.56-
gca-sun-a-gated-context-aware-swin-unet-for14.0016.0692.1953.04
countr-transformer-based-generalised-visual11.9513.1391.2349.83
semantic-generative-augmentations-for-few12.7412.5989.9044.95
dave-a-detect-and-verify-paradigm-for-low8.668.9132.3628.08
omnicount-multi-label-object-counting-with18.63-112-
learning-to-count-everything22.0823.7599.5469.07
vision-transformer-off-the-shelf-a-surprising9.1310.6348.9637.95
semantic-generative-augmentations-for-few11.3212.3177.5041.65
countgd-multi-modal-open-world-counting5.747.124.0926.08
object-counting-you-only-need-to-look-at-one15.7817.1197.1556.81
open-world-text-specified-object-counting15.8817.10106.2965.61
learning-spatial-similarity-distribution-for9.589.7364.1329.72
scale-prior-deformable-convolution-for13.5114.5996.8049.97
a-low-shot-object-counting-network-with10.7910.2456.9732.56
represent-compare-and-learn-a-similarity14.6215.7491.8358.53